metabelian, supersoluble, monomial
Aliases: C62.57D4, C62.104C23, C23.31S32, (C2xC6).15D12, C6.82(C2xD12), D6:Dic3:15C2, C6.D4:6S3, (C22xC6).68D6, (C2xDic3).41D6, (C22xS3).25D6, Dic3:Dic3:35C2, C6.67(D4:2S3), (C2xC62).23C22, C2.15(D6.4D6), C3:5(C23.21D6), C3:2(C23.23D6), (C6xDic3).24C22, C22.11(C3:D12), C32:11(C22.D4), (C6xC3:D4).7C2, (C2xC3:D4).4S3, C6.19(C2xC3:D4), C22.134(C2xS32), (C3xC6).150(C2xD4), (S3xC2xC6).42C22, (C3xC6).79(C4oD4), C2.22(C2xC3:D12), (C3xC6.D4):7C2, (C2xC6).23(C3:D4), (C22xC3:Dic3):2C2, (C2xC6).123(C22xS3), (C2xC3:Dic3).144C22, SmallGroup(288,610)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C62.57D4
G = < a,b,c,d | a6=b6=c4=1, d2=b3, ab=ba, cac-1=a-1b3, dad-1=a-1, bc=cb, dbd-1=b-1, dcd-1=b3c-1 >
Subgroups: 626 in 183 conjugacy classes, 52 normal (26 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2xC4, D4, C23, C23, C32, Dic3, C12, D6, C2xC6, C2xC6, C2xC6, C22:C4, C4:C4, C22xC4, C2xD4, C3xS3, C3xC6, C3xC6, C3xC6, C2xDic3, C2xDic3, C2xDic3, C3:D4, C2xC12, C3xD4, C22xS3, C22xC6, C22xC6, C22.D4, C3xDic3, C3:Dic3, S3xC6, C62, C62, C62, Dic3:C4, C4:Dic3, D6:C4, C6.D4, C6.D4, C3xC22:C4, C22xDic3, C2xC3:D4, C6xD4, C6xDic3, C6xDic3, C3xC3:D4, C2xC3:Dic3, C2xC3:Dic3, S3xC2xC6, C2xC62, C23.21D6, C23.23D6, D6:Dic3, Dic3:Dic3, C3xC6.D4, C6xC3:D4, C22xC3:Dic3, C62.57D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, D12, C3:D4, C22xS3, C22.D4, S32, C2xD12, D4:2S3, C2xC3:D4, C3:D12, C2xS32, C23.21D6, C23.23D6, D6.4D6, C2xC3:D12, C62.57D4
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 13 3 15 5 17)(2 14 4 16 6 18)(7 48 9 44 11 46)(8 43 10 45 12 47)(19 25 23 29 21 27)(20 26 24 30 22 28)(31 41 35 39 33 37)(32 42 36 40 34 38)
(1 27 18 30)(2 22 13 19)(3 25 14 28)(4 20 15 23)(5 29 16 26)(6 24 17 21)(7 39 47 42)(8 36 48 33)(9 37 43 40)(10 34 44 31)(11 41 45 38)(12 32 46 35)
(1 10 15 47)(2 9 16 46)(3 8 17 45)(4 7 18 44)(5 12 13 43)(6 11 14 48)(19 35 29 37)(20 34 30 42)(21 33 25 41)(22 32 26 40)(23 31 27 39)(24 36 28 38)
G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,13,3,15,5,17)(2,14,4,16,6,18)(7,48,9,44,11,46)(8,43,10,45,12,47)(19,25,23,29,21,27)(20,26,24,30,22,28)(31,41,35,39,33,37)(32,42,36,40,34,38), (1,27,18,30)(2,22,13,19)(3,25,14,28)(4,20,15,23)(5,29,16,26)(6,24,17,21)(7,39,47,42)(8,36,48,33)(9,37,43,40)(10,34,44,31)(11,41,45,38)(12,32,46,35), (1,10,15,47)(2,9,16,46)(3,8,17,45)(4,7,18,44)(5,12,13,43)(6,11,14,48)(19,35,29,37)(20,34,30,42)(21,33,25,41)(22,32,26,40)(23,31,27,39)(24,36,28,38)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,13,3,15,5,17)(2,14,4,16,6,18)(7,48,9,44,11,46)(8,43,10,45,12,47)(19,25,23,29,21,27)(20,26,24,30,22,28)(31,41,35,39,33,37)(32,42,36,40,34,38), (1,27,18,30)(2,22,13,19)(3,25,14,28)(4,20,15,23)(5,29,16,26)(6,24,17,21)(7,39,47,42)(8,36,48,33)(9,37,43,40)(10,34,44,31)(11,41,45,38)(12,32,46,35), (1,10,15,47)(2,9,16,46)(3,8,17,45)(4,7,18,44)(5,12,13,43)(6,11,14,48)(19,35,29,37)(20,34,30,42)(21,33,25,41)(22,32,26,40)(23,31,27,39)(24,36,28,38) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,13,3,15,5,17),(2,14,4,16,6,18),(7,48,9,44,11,46),(8,43,10,45,12,47),(19,25,23,29,21,27),(20,26,24,30,22,28),(31,41,35,39,33,37),(32,42,36,40,34,38)], [(1,27,18,30),(2,22,13,19),(3,25,14,28),(4,20,15,23),(5,29,16,26),(6,24,17,21),(7,39,47,42),(8,36,48,33),(9,37,43,40),(10,34,44,31),(11,41,45,38),(12,32,46,35)], [(1,10,15,47),(2,9,16,46),(3,8,17,45),(4,7,18,44),(5,12,13,43),(6,11,14,48),(19,35,29,37),(20,34,30,42),(21,33,25,41),(22,32,26,40),(23,31,27,39),(24,36,28,38)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 6A | ··· | 6F | 6G | ··· | 6Q | 6R | 6S | 12A | ··· | 12F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 12 | 2 | 2 | 4 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | 2 | ··· | 2 | 4 | ··· | 4 | 12 | 12 | 12 | ··· | 12 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | D4 | D6 | D6 | D6 | C4oD4 | D12 | C3:D4 | S32 | D4:2S3 | C3:D12 | C2xS32 | D6.4D6 |
kernel | C62.57D4 | D6:Dic3 | Dic3:Dic3 | C3xC6.D4 | C6xC3:D4 | C22xC3:Dic3 | C6.D4 | C2xC3:D4 | C62 | C2xDic3 | C22xS3 | C22xC6 | C3xC6 | C2xC6 | C2xC6 | C23 | C6 | C22 | C22 | C2 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 1 | 2 | 4 | 4 | 4 | 1 | 4 | 2 | 1 | 4 |
Matrix representation of C62.57D4 ►in GL8(F13)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
12 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(8,GF(13))| [1,10,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0],[12,3,0,0,0,0,0,0,8,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,2,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[5,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;
C62.57D4 in GAP, Magma, Sage, TeX
C_6^2._{57}D_4
% in TeX
G:=Group("C6^2.57D4");
// GroupNames label
G:=SmallGroup(288,610);
// by ID
G=gap.SmallGroup(288,610);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,176,422,219,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^6=c^4=1,d^2=b^3,a*b=b*a,c*a*c^-1=a^-1*b^3,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=b^3*c^-1>;
// generators/relations